Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Liang Liang, ${ }^{\text {a }}$ Rongwei Guo ${ }^{{ }^{\text {b }}}$ and Zhongyuan Zhou ${ }^{\text {b }}$

${ }^{\text {a }}$ Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, People's Republic of China, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China, and ${ }^{\text {b }}$ Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China

Correspondence e-mail:
98900496r@polyu.edu.hk

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.043$
$w R$ factor $=0.058$
Data-to-parameter ratio $=17.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

O, O^{\prime}-(R)-(1, 1^{\prime}-Dinaphthyl-2,2'-diyl) N-benzyl- N -(2-pyridyl)phosphoramidite

The title compound, $\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}$, is a moisture- and oxygensensitive phosphite ligand. It has been shown to be effective in asymmetric conjugate addition of diorganozinc reagents to α, β-unsatuated cyclic enones.

Comment

Recently, some striking results have been obtained in the $\mathrm{Cu}-$ catalysed enantioselective conjugate addition of organometallic reagents; in particular, the addition of diorganozinc reagents to α, β-unsaturated esters, acyclic and cyclic enones, using chiral phosphoramidite ligands (Feringa et al., 1997). Our research shows that the phosphoramidite ligand derived from 2-aminopyridine and binaphthol is an efficient ligand in the 1,4-conjugate addition of diphenylzinc to cyclic enones. Here, as part of our investigation, we report the crystal structure of the title compound, (I). Bond lengths and angles are within normal ranges (Table 1).

(I)

Experimental

All reactions were carried out under N_{2}, using Schlenk techniques. To a cooled solution (213 K) of $\mathrm{PCl}_{3}(270 \mathrm{ml}, 3.0 \mathrm{mmol}), \mathrm{EtN}_{3}(860 \mathrm{ml}$, 6.0 mmol), and toluene (5 ml) was added a warm solution (333 K) of (R)-2,2'-binaphthol ($860 \mathrm{mg}, 3.0 \mathrm{mmol}$) in toluene (25 ml) over a period of 25 min . After stirring for 2 h , the reaction mixture was warmed to room temperature and filtered under a nitrogen atmosphere. The filtrate was a solution of the chlorophosphite. The title compound was prepared by the reaction of the chlorophosphite and 2.9 mmol of the benzyl-2-pyridine compound at 233 K in the presence of $\mathrm{Et}_{3} \mathrm{~N}(410 \mathrm{ml}, 2.9 \mathrm{mmol})$ and 4-dimethylaminopyridine. The crude products were purified by flash silica-gel chromatography. 1185 mg of a white solid was obtained (yield: 82%). A colorless crystal suitable for X-ray diffraction was obtained by recrystallization from a solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and ether. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 144.47$ p.p.m.

Crystal data

$\mathrm{C}_{32} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{P}$
$M_{r}=498.49$
$\begin{aligned} & \text { Orthorhombic, } P_{2} 2_{1} 1_{1} \\ & a=9.5168(11) \AA \end{aligned}$
$b=10.3952$ (11) \AA
$c=25.398$ (3) A
$V=2512.6$ (5) \AA^{3}
$Z=4$
$D_{x}=1.318 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 3922 reflections
$\theta=1-27.5^{\circ}$
$\mu=0.14 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colorless
$0.36 \times 0.32 \times 0.30 \mathrm{~mm}$

Received 18 February 2003
Accepted 24 March 2003
Online 9 April 2003

Data collection

Siemens CCD area-detector
diffractometer diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.950, T_{\max }=0.958$
17396 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.058$
$S=0.90$
5805 reflections
334 parameters
H -atom parameters constrained

5805 independent reflections
2424 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.075$
$\theta_{\text {max }}=27.6^{\circ}$
$h=-12 \rightarrow 12$
$k=-13 \rightarrow 13$
$l=-22 \rightarrow 33$

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

P1-N1	$1.733(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.398(3)$
O1-C1	$1.392(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.350(4)$
N1-C28	$1.387(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.416(4)$
N1-C21	$1.460(3)$	$\mathrm{C} 4-\mathrm{C} 9$	$1.418(4)$
N2-C28	$1.338(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.337(4)$
O2-P1-O1	$100.09(9)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.4(3)$
O2-P1-N1	$103.69(10)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.2(3)$
O1-P1-N1	$93.54(11)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$121.4(4)$
C1-O1-P1	$118.97(16)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$120.8(3)$
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 2$	$123.2(3)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$121.6(3)$
N1-P1-O2-C20	$46.8(2)$	$\mathrm{P} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 10$	$74.9(3)$
O2-P1-N1-C28	$76.7(2)$	$\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 20$	$-52.8(4)$
O2-P1-N1-C21	$-92.7(2)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-59.6(4)$

H atoms were included in the riding-model approximation, with $U_{\text {iso }}$ values equal to the $U_{\text {eq }}$ of the atom to which they were bound.

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SHELXTL (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s)

Figure 1

The molecular structure of (I), showing ellipsoids at the 50% probability level (Siemens, 1995).
used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We thank The Hong Kong Polytechnic University ASD Fund for financial support of this study.

References

Feringa, B. L., Pineschi, M., Arnold, L. A., Imbos, R. \& de Vries, A. H. M. (1997). Angew. Chem. Int. Ed. Engl. 36, 2620-2623.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1995). SMART (Version 5.0) and SHELXTL-NT (Version 5.10). Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

